REC AL AND REC PP – RECUPERATIVE PLATE TYPE HEAT EXCHANGERS "AIR - AIR"

Description

- Heat exchangers are designed for recycling of heat or cold of the exhaust air or gas from ventilation, air-conditioning, drying or technological systems.
- Work with air and gas with temperature from -40°C up to +90°C and maximal differential pressure between two streams 1000 Pa.
- Heat exchangers are not suitable for aggressive, flammable and explosive mixtures.

Models

- REC AL heat exchanger with aluminum lamellas
- REC PP modular plate heat exchanger with profiled polypropylene lamellas

Options – after individual request in the offices of Tangra-AV

- Air filters at the inlets of fresh and exhaust air section 02-03.
- Heat exchanger by-pass for fresh air PGR-BS double multiple leaf damper with single control option (manual or automatic) section 02-09.
- Elements for control, regulation and automation: presostat for polluted filter and recuperator freeze protection of the exhaust air.

Installation

 Heat exchangers are incorporated in ventilation blocks and air handling units. Detached incorporation in rectangular air duct system with joined dimensions (B-40)/(H-40) or completed four sided with flanges from galvanized metal sheets is also possible.

REC AL – Tentative calculation heating mode

Initial conditions:

Quantities of supply and exhaust air are equal – $V_s = V_E [m^3/h]$

Atmospheric pressure – 710 mmHg ≈ 940 hPa

 T_{S1} ($T_{OUT.}$) = -12°C – temperature of fresh air

 $\phi_s = 90\%$ – relative humidity of the fresh air

 T_{E1} ($T_{premise.}$) = +22°C – temperature of the exhausted air

 $\phi_s = 30\%$ – relative humidity of the exhausted air

W ₀ [m/s]	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
T _{s2} (°C)	3.6	4.0	4.4	4.7	4.9	5.2	5.4	5.6	5.8	6.0
T _{E2} [°C]	6.4	6.0	5.6	5.3	5.1	4.8	4.6	4.4	4.2	4.0
Δp [Pa]	30	41	53	67	83	101	120	141	163	187
E [%]	54.0	52.9	51.9	51.0	50.2	49.5	48.8	48.2	47.7	47.2
q [W/m³/h]	5.80	5.67	5.57	5.47	5.39	5.31	5.24	5.18	5.12	5.06

 \mathbf{W}_0 [m/s] – velocity at the inlet section A_0 [m²]

 T_{s2} [°C] – temperature of supplied air after recuperator

 T_{E2} [°C] – temperature of exhaust air after recuperator

Δp [Pa] – supply air pressure drop

E [%] – supply air efficiency

q [W/m³/h] – recycled energy for 1 m³/h air

Note:

For particular cases and detailed calculations of all parameters, please use **REC 01** software.

REC AL - Tentative calculations heating mode

Initial conditions:

Quantities of supply and exhaust air are equal – $V_s = V_E [m^3/h]$

Atmospheric pressure – 710 mmHg ≈ 940 hPa

 T_{S1} ($T_{OUT.}$) = -12°C – temperature of fresh air

 $\varphi_s = 90\%$ – fresh air relative humidity

 T_{E1} ($T_{\Pi OM}$) = +22°C – exhaust air temperature

 $\varphi_s = 30\%$ – exhaust air relative humidity

REC AL 1200/9 E [%] **Δ**p [Pa] 200 60 58 180 56 160 54 140 52 120 50 100 80 60 40 20 0 3.2 W_o [m/s] 1.6 1.8 2.0 2.2 2.8 3.0

W ₀ [m/s]	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2
T _{S2} (°C)	2.5	2.7	2.9	3.1	3.3	3.4	3.6	3.7	3.8	3.9
T _{E2} [°C]	7.5	7.3	7.1	6.9	6.7	6.6	6.4	6.3	6.2	6.1
Δр [Ра]	37	48	61	75	91	108	127	147	169	192
E [%]	57.3	56.6	56.1	55.6	55.1	54.6	54.2	53.9	53.5	53.2
q [W/m³/h]	6.15	6.08	6.01	5.96	5.91	5.86	5.82	5.78	5.74	5.71

 \mathbf{W}_0 [m/s] – velocity at the inlet section A_0 [m²]

 T_{s2} [°C] – temperature of supplied air after recuperator

 T_{E2} [°C] – temperature of exhaust air after recuperator

Δp [Pa] – supply air pressure drop

E [%] – supply air efficiency

q [W/m³/h] – recycled energy for 1m³/h air

Note:

For particular cases and detailed calculations of all parameters, please use REC 01 software.

REC PP – Tentative calculations heating mode

Note:

- Quantities of supply and exhaust air are equal V_s = V_E [m³/h]
- Atmospheric pressure **710 mmHg** ≈ 940 hPa
- For particular cases and detailed calculations of all parameters, please use **REC 01** software.

REC PP – Tentative calculations heating mode

Note:

- Quantities of supply and exhaust air are equal $V_s = V_E [m^3/h]$
- Atmospheric pressure **710 mmHg** ≈ 940 hPa
- For particular cases and detailed calculations of all parameters, please use **REC 01** software.

Order designation

